

Biology 11 Notes

Self-Guided Notes : "Complex" Invertebrates : Chapter 27, 28, 29 (Miller & Levine)

27-1	Mollusks		
I.	What is a Mollusk?		
	А.	Phylum Mollusca, Origin: from Latin;=	
	В.	Contains animals that and very differently from each other.	
	C.	Mollusks (def'n):	
II.	Form	and Function in Mollusks	
	А.	Body plans have 4 basic parts:	
	Ð	1. 2. 3. 4.	
	В.	Foot	
		1. Usually contains the and other structures associated with	
		2 Many different shapes:	
		a.	
		1	
		D.	
		C.	
	C.	Mantle: (Definition)	
	0.		
	D.	Visceral Mass contains	
	E.	Radula:	
		1. Is ashaped structure used in feeding.	
		2. A layer of skin that carries hundreds of tiny	
		3. Acts like to scrape/tear off food from surfaces.	
	F.	Carnivores have a radula or sharp; some produce to subdue	
	C	prey.	
	G.	Filter feeders use to sift food from water and on	
	Ц	Baspiration	
	11.	1 Aquatic species: use inside the mantle	
		2. Land species: useinside the manue.	
		folded and kept moist so can enter cells.	
	I.	Transport	
		1. Slow moving species: circulatory system.	
		a) The is pumped by a simple	
		b) Blood works its way through body tissues in open spaces called	
		c) These into vessels that pass first through the,	
		where oxygen and carbon dioxide are exchanged, and then back to the heart.	
		2. Fast moving species: system (more).	

- J. Excretion
 - Undigested food leaves through the _____ as _____ 1.
 - Ammonia is removed from the body _____ by tube-shaped organs called 2.

К. Response

- nervous systems. 1.
 - In mollusks that live inactive lives ie. a)
 - several small _____ near the mouth i)
 - a few cords ii)
 - simple sense organs such as a _____ and iii) receptors, statocysts and ocelli
- nervous systems. 2.
 - a)

 - complex sense organs ie. Image forming _____ ii)

L. Reproduction

- Most commonly: ______ sexes and ______fertilization; eggs and 1. sperm are released into the water and find each other by chance. A free-swimming _____ (called a trochophore) develops from the resulting fertilized eggs.
- _____ mollusks: separate sexes and ______ fertilization. 2.
- Many snails: hermaphrodites / _____ 3.

Snails, Slugs, and Their Relatives III.

- Class _____; Origin of name: А.
- All move by means of a broad, muscular located on the B. (stomach) side.
- Have a ______ shell that protects their soft bodies. C.

IV. **Two-Shelled Mollusks**

- Class _____; Origin of name: bi = two; valve = shell. А.
- Have ______ shells that are hinged together at the back and held together by B. one or two powerful _____.
- C. Examples of bivalves:

V. Tentacled Mollusks

- Class _____; Origin of name: cephalo = head; pod = foot. А.
- В. Examples of cephalopods:
- C. Size:
- Most cephalopods have small ______ shells or ______ shells. D.
- E. Defense and Predation:
 - Move rapidly by using a form of _____ propulsion forcing 1. _____ out of the mantle cavity through the tubelike siphon.

- Release large amounts of dark-colored, foul-tasting ______ when they are 2. frightened.
- Can change ______ to blend into their ______. 3.

How Mollusks Fit into the World VI.

- Many ecological roles: А.
 - 1.
 - ivores 2. ivores Scavengers: eat _____ (clean up dead material) 3.
- Food source for and other animals. B.
- C. 3 examples of mollusks and how they are detrimental:
 - Damage ______ and _____. 1.
 - Shipworms: destroy wooden ______ and _____. 2.
 - ______ and ______ can concentrate toxins from the water (ie. 3. _____ tide) into their body tissues. This can harm or kill individuals who consume them.

29-1 Echinoderms

I. Echinoderms

A.Origin of the Phylum name Echinodermata

1. echino =dermis =

II. What is a Echinoderm?

A. Characteristics of Phylum Echinodermata

- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- B. Water vascular system
 - Description: internal network of fluid-filled ______ connected to external 1. appendages called _____
 - Water vascular system is involved in 5 2. essential life functions:
 - a.
 - b.
 - c.
 - d.
 - e.

- C. What do Echinoderms have in common with vertebrates? 1.
 - 2.

III. Form and Function in Echinoderms

A. Body Plan:

В.

No _____ nor a _____ 1. end and no _____ But, most are _____ sided 2. Mouth is located on surface, opposite side is called the a. surface Opens to outside through a 1. 2. In starfish: a. Madreporite connects to a tube called the _____ b. From the ring canal, 5 extend into each arm Attached to each radial canal are hundreds of movable _____ c. System operates like a series of living _____pumps 3. a. When water is pushed into a tube foot, the tube foot b. When water is pulled out, the cup on the end of the tube foot _____, creating a partial _____ that holds on Alone, a tube foot cannot _____much, but hundreds acting c. _____create enormous _____

D. Feeding

1. Describe how starfish feed (in detail)?

E. Respiration

- 1. Most species use tissue of ______ tube feet.
- 2. Others (e.g. starfish) have small outgrowths called _____

- F. Internal transport
 - 1. Nutrient distribution done by _____ glands and fluid in _____

G. Excretion

- 1. Solid wastes released through _____
- 2. Ammonia excreted by _____ &

H. Response

- 1. Most echinoderms have a _____ ring that surrounds the mouth and ______nerves that connect the ring with the body sections
- 2. Scattered _____cells detect food
- 3. Starfish have clusters of _____-sensitive cells called ______ at arm tips
- 4. _____ tell if organism is _____

up

I. Movement

- 1. Echinoderms use _____ feet and
- thin layers of ______ fibers attached to the plates of the ______ to move

J. Reproduction

- 1. Most echinoderms are _____or _____
- 2. Egg and sperm are released in the _____ when other eggs and sperms are detected so fertilization occurs in _____ water.
- 3. Larvae swims in the _____ community until they mature and ______ into adults at the bottom of the ocean.

IV. The Echinoderm Classes

- A. Echinoderms are NOT found:
 - 2.

- 1. B. Starfish
 - 1. Also known as:
 - 2. Physical Description:
- D. Sea Urchins and Sand Dollars
 - 1. Physical description:
 - a. Sand dollars are _____-shaped; Sea urchins are _____-shaped
- E. Sea Cucumbers
 - 1. Physical description:

V. How Echinoderms Fit into the World

- A. Ecological roles:
 - 1. Starfish are important ______ that control ______ of other animals
 - 2. Sea urchins control _____, but can "overeat" and destroy habitats
- B. Use by humans:
 - 1. As food:

2. As sources of chemicals used as potential drugs against _____ and

3. Sea urchins used to study embryological development because:

28-1	Introduction to Arthropods		
I.	Form and Function in Arthropods		
	А.	All arthropods have 3 key features:	
		1. 2. 3.	
	D		
	В.	Many arthropods have 3 additional features:	
		1. 2. 3.	
	C	Arthropod body plan	
	0.	1. Exoskeleton: (definition)	
		a. Function:	
		i. ii. iii.	
		b. Disadvantages:	
	D	Facility	
	D.	List and give an example of an organism employing each type of feeding	
		method	
		a.	
		1	
		b.	
		с.	
		d.	
		e.	
	Е.	Respiration	
		1. 3 basic types of respiratory structures	
		a. b. c.	
	Б	Internal Transport	
	г.	1 Have a well-developed pumping blood through an	
		system.	
		2. Blood moves out of moves through spaces called .	
	G.	Excretion	
		1. Solid waste:	
		2. Metabolic waste eliminated by:	
		a. b. c.	
	Н.	Response	
		1. Nervous system composed of:	
		a. D.	

- 2. Have sense organs such as:
- a. b. c. d. e. f. 3. Defense against predators (be descriptive): a. b. c. d. Reproduction Fertilization is _____. Males transfer _____directly or drop a _____ of sperm that is picked 1. 2. up by the _____.

III. Growth and Development in Arthropods

I.

- A. What is the problem with exoskeletons?
- B. Describe the steps that occur during molting (5 steps).

C. What is the difference between complete metamorphosis and incomplete metamorphosis?

28-2 Spiders and Their Relatives

20-2	Spide	ers and Their Relatives	
I.	<u>Spide</u>	ers and Their Relatives	
	А.	Subphylum Chelicerata has 3 main characteristics	
		1.	
		2.	
		3.	
III.	Arac	hnids	
	А.	Characteristics:	
		1.	
		2.	
	в	Some examples of Arachnids.	
	D.	1 2	3
	C.	Spiders 2.	5.
		1. Diet:	
		a. Describe how a spider eats (3 steps).	

2. Silk: (definition)

a. Why do arachnids build silk structures?

28-3	Crus	staceans		
I.	Crustaceans			
	А.	Characteristics:		
		1. 2. 3.		
	В.	Examples of Crustaceans:		
		1(terrestrial)		
		2,, etc (aquatic)		
	C.	The 3 body parts are called:		
		1. 2. 3.		
	D.	Cephalothorax: (definition)		
	E.	First two pair of appendages are:		
	F.	Third pair of appendage are called for:		

- G. The appendages on the thorax and abdomen can be for: 1.
 - 2.
 - 3.

28-4	Inse	cts and Their Relatives	
I.	Insects and Their Relatives		
	А.	Characteristics:	
		1. 2.	
	В.	Habitat:	
П	Cent	inedes and Millinedes	
11.	A	Centipedes	
	11.	1. Description:	
		1. Description.	
		2. Lifestyle:	
	В.	Millipedes	
		1. Description:	
		2. Lifestyle:	
TTT	Inco		
111.	A	<u>Characteristics</u>	
	11.	1.	
	В.	Feeding	
		1. Why are the mouthparts so different in different insects?	
		2contains specialized enzymes:	
		a.	
		b.	
		С.	
	C	Movement	
	C.		
	D	Insect societies	
	D.	1. Society: (definition)	
		2. Within societies, there is division of	

- 3. The 3 basic castes and their main function(s) are:
 - a.
 - b.
 - c.
- E. Insect communication
 - 1. Use:
 - a.
 - b.
 - c.
 - 2. Functions of communication are: a.
 - b.
 - 3. Pheromone: (definition)

28-5 How Arthropods Fit into the World How Arthropods Fit into the World I. Ecological role: А. 1. 2. _plants Contributions to human life: В. 1. ____and _____ research 2. List 3 things that arthropods damage C. 1. 2.

3.

Self-Guided Notes : "Simple" Plants : Chapter 20 & 21 (Miller & Levine)

20-1	Char	acteristics of Algae
I.	Intro	duction
	А.	Description:
		1. Are organisms
		2. Live in fresh water (e.g) and
	В.	Must live in or near a:
		1. Reason:
	C.	 2. Water they live in: a. provides: and carries away Types of algae 1. Most are:; Giant kelp can grow to long
		2. Unicellular are, and can also classified as
	D.	Algae structures
		1. Cells have
		2. Never have specialized,, or like land plants do

II. Adaptations of Algae to Life Under Water

A. How they differ from land plants:

Because they:	Means that Algae:
Don't need protection from drying out	Are thin (only thick!)
Exchange materials directly with surrounding	Have notissues.
water	
Are supported by water	Don't need stems to keep from
Reproduce in water	Make gametes that

II. Chlorophyll and Accessory Pigments

- A. Challenges of underwater life:
 - 1. Water _____ much of the _____ of sunlight
 - 2. Algae groups have evolved ______ that absorb different ______ of light
 - 3. Some also evolved other _____ compounds called _____
 - a. They can live in deeper water
 - b. Different ______ wavelengths give algae a wide range of ______

20-2	Groups of Algae			
I.	Chlorophyta – The Green Algae			
	A. Habitat:			
	1. Found mostly of	n moistand in	water	
	B. Examples:			
	Cell arrangement:	Name:	Sketch:	
	Single-celled			
		Volvox		
	Filamentous (threadlike)			
		Ulva "sea lettuce"		
II.	Phaeophyta – The Brow	vn Algae		
	A. Habitat:	0		
	1. Marine: espe	cially cool, shallow waters	in or oceans	
	B. Most "sea weeds" a	ure:		
	1. Giant kelp			
	 Fucus (common name:): a. make a labeled sketch: 			
	b. give fu	unction of:		
	i) hol	dfast:		
	ii) bla	dders:		
III.	Rhodophyta – The Red	Algae		

- A. Habitat:
 - 1. Marine: from arctic to _____, from surface to _____ deep due to
- B. Examples:
 - 1. Porphyra (dried, it's called _____and used to make _____)

20-4 Where Algae Fit into the World

A. Ecological role:

- 1. In food chains: called the "_____"
- 2. Habitat for others: e.g. the _____ of North American coasts
- 3. Oxygen providers:
 - a. Life could not have _____ without the O_2 they release in
 - b. Algae do _____ of all photosynthesis on Earth

B. Uses by humans

- 1. Sources of _____ used in:
 - b. Food additives
- c. Industrial products

a. Drugs

d. _____ used to make plates for microbiology

21-1 Plants Invade the Land		
I. Demands of Life on Land		
The demands:	What land plants must do:	
Provide cells with a constant	a. find water	
	b to all cells	
	c. Protect against by	
	evaporation	
Expose food-making parts to	need to hold up &	
	leaves	
Different tasks performed in distant plant parts:	Need a transport system:	
a take up water &	a. water/nutrients	
nutrients		
bmake food	b. sugars made by	
	downward	
For reproduction, gametes must find each other	Need a mechanism to deliver sperm that	
	DOESN'T involve having them	

21-2 The Mosses, Liverworts, and Hornworts

I. <u>Introduction</u>

- A. Need _____ for reproduction to occur
- B. Thrive only in wet areas: _____
- C. All less than a few _____ tall
- D. Mosses:
 - 1. Each plant has:
 - a. A thin, upright ______ like a stem with tiny ______ called the Gametophyte
 - b. From base of the shoot grow _____ that anchor the plant
 - c. Shoots may be topped with a brown flag-like structure called a
 - 3. Copy and label the diagram in 21-5:

II. Physical Characteristics of Bryophytes

- A. Water Conduction
 - 1. Lack tubes
 - 2. Water passes between cells by _____ and _____
 - 3. These methods work: ______ only; can't grow _____
 - 4. Lack a protective surface covering to prevent evaporation
 - 5. "Leaves" only _____ thick; dry out _____
 - 6. Lack true roots: ______ anchor, but don't ______ and _____ water & minerals
- B. Reproduction
 - 1. Sperm must ______ to the egg, using ______ to propel themselves
 - 2. Moss environment must be wet for:

III. Alternation of Generations in Mosses

- A. Life Cycle Stages:
 - 1. At the tips of the gametophyte:
 - a. ____: makes sperm
 - b. ____: makes eggs
 - 2. Fertilization
 - a. Sperm swims to _____
 - b. Plants must be covered with _____ or _____
 - c. Gamete fusion produces a _____ (diploid, or "2n")

3. Growth

- a. Zygote grows into _____
- b. Its ______ are supplied by female gametophyte
- c. Sporophytes cannot live _____
- d. _____ at end of stalk makes haploid (1n) _____ by

4. Spore Release

- a. When _____, capsule opens, shakes out spores
- b. Spores _____ off by _____ and _____
- 5. Growth of 1n Generation
 - a. Spores that land in moist places germinate into a _____

 - c. This grows _____ into soil and _____ into the air that develop into moss _____
 - d. The cycle begins again!

B. Summary:

- 1. Gametophyte (1n or haploid) is the _____, obvious stage
- 2. Fertilization requires _____
- 3. Sporophyte is dependent upon _____

21-3 The Ferns and the First Vascular Plants

I. Introduction to Tracheophyta

- A. "True" Land Plants because they:
 - 1. Vascular tissues: two types:
 - a. _____: moves water from roots to rest of plant b. Phloem:
 - 2. _____ cells in xylem have thick, strong walls that help plants
 - 3. True roots have transport tissue in a central ______
 - 4. True leaves have:
 - a. veins (def'n):
 - b cuticle (def'n):

II. Club Mosses and Horsetails

- A. The only living descendants of _____
- B. Some grew up to _____ tall!
- C. Some fossilized into _____
- D. Sketch a horsetail: Label its stem and leaves:

III. Physical Characteristics of Ferns

- A. Organs:
 - 1. Have true _____
 - 2. True roots
 - 3. Underground stems called _____
 - 4. Large leaves called _____
- B. Size & Habitat
 - 1. Up to ______ tall in North America; in tropical forests can be the size of
 - 2. Found in _____, or _____ places (e.g. rainforests of _____)

IV. Alternation of Generations in Ferns

- A. Life Cycle Stages:
 - 1. Spore Production/Release:
 - a. Adult sporophytes produce haploid _____ on _____ of fronds
 - b. Formed in tiny containers called _____
 - c. Sporangia cluster together in groups called _____

d. When _____, spores released; carried by _____, ____

- 2. Growth Spores develop into _____ (1n) _____ a. Grow into small, heart-shaped b. _____ and _____ develop on underside of prothallium c. Fertilization 3. Antheridia release _____ a. Sperm must swim through to an b. Each archegonium contains one _____ c. Fusion of gametes produces a _____(2n) _____ d. 4. Growth a. New sporophyte puts out _____, _____ Gametophyte _____ b. Β. Summary: Dominant, obvious stage is the _____ 1. Sporophyte is a ______ with true ______ 2. Gametophyte can only grow in _____ 3. Sex still requires _____ 4. 21-4 Where Mosses and Ferns Fit into the World I. Mosses: Ecological Role А. Common in _____ II. Mosses: Uses by Humans Gardening Α. Used as plants 1. 2. Peat moss added to soil to _____ В. Burning sphagnum Flavours _____ 1. 2. Peat is used as **III.** Ferns: Ecological Role Common in the shadows of ______, because they: А. **IV.** Ferns: Uses by Humans
 - A. Gardening
 - 1. Used as plants
 - B. Food
 - 1. Some species eaten when young; fronds called ______

22-1 S	eed P	lants
Benefi	its to p	blants of living on land are:
		1.
		2.
Proble	ems en	countered by life on land are:
		1.
		2.
		З.
		4.
I.	Seed	<u>plants – designed for life on land</u>
		Seed plants exhibit numerous that allow them to survive the difficulties of
		life on They evolved a variety of new adaptations that enabled them to live
		where could not.
II.	Roots	s, Stems, Leaves
	А.	The three main organs in a plant are
		perform three jobs:
		1.
		2.
		3.
	B.	hold a plantsup to the sun.
	С.	are vital to the process of
III.	Vascu	ular Tissue
	Tall p	lants face a challenge,must be lifted from to and
		produced inmust be sent to the
		-
	А.	is responsible for carryingandup. They have thick
		so also provide to the woody parts.
	B.	carries the products offrom one part of the plant to another.
IV.	Repr	oduction Free From Water
	The s	eed plants you see around you are members of thegeneration.
	А.	andare the reproductive structures where the
		generation of the seed plant develops.
	B.	Male gametophytes are called Pollen grains are carried to the female
		gametophyte so nois required.
	С.	protect the zygotes of seed plants. They are surrounded by a so

can wait until _____are right.

23-5 Leaves

The leaves of green plants are the world's oldest ______. Leaves are also the world's most important ______.

I. <u>Leaf Structure</u>

- A. Leaves consist of two parts: _____ and _____.
- B. Blades are adapted to the specific ______ in which the live. Adaptations range from ______ to _____.
 - Leaves contain specialized tissues such as:
 - 1.
 - 2.
 - 3.

II. <u>Epidermis: Controlling Water Loss</u>

A. Epidermal cells are _____ and do not contain _____.
 Together with the _____, this layer protects delicate leaf tissues by slowing down the loss of _____ through _____

B. BUT, plants still need to "breathe" just as we do. They need to: 1.

- 2.
- C. Leaves must stay *moist* to carry out these gas exchanges. Seed plants solve this problem by balancing their need for ______ with _____. They use small openings called ______.

_____ are generally located on ______.

D. The specialized cells on either side of a stoma are called _____. When water pressure is high, the cells _____. When water pressure is low, _____.

E. Each type of plant has guard cells that balance ______ against ______.

III. Vascular tissues: The Veins of a leaf

A. Vascular tissue in leaves is directly connected to the vascular tissues of stems. In monocot leaves, _____. In dicot leaves, _____.

IV. Mesophyll Tissue: The food factory of the leaf

- A. Most leaf tissue is called _____. This is separated into two layers:
 1.
 - 2.
- B. The surfaces of the mesophyll layer are kept ______so that gases can ______the cells easily. A substantial amount of water is still lost to the outside through ______-.

25-1 Cones & Flowers as Reproductive Organs

I. Introduction

- A. Sexual Reproductive Organs
 - 1. Gymnosperms have _____
 - 2. Angiosperms have _____
- B. Review: Plant Life Cycles
 - 1. Two generations
 - a) diploid (2n) _____
 - b) haploid (1n) _____ which produces _____ and ____ gametes
 - 2. Fusion of gametes forms a _____that grows into the next generation, the _____
- C. Sizes in Seed Plants
 - 1. Dominant generation (the one that is ______ & _____) = _____ Gametophyte is ______ in the cones/flowers
- D. Advantages of Cones/Flowers
 - 1. Enable _____ plants to reproduce without standing _____
 - 2. An adaptation that helps them survive:

22-2 Evolution of Seed Plants

I. <u>Gymnosperms</u>

_____ means naked, _____means seed.

There are three classes of gymnosperms:

- 1.
- 2.
- 3.

Reproductive structures are called _____. Male cones produce male gametophytes called _____. Female cones produce female gametophytes called _____.

A. _____ are palmlike plants. They only grow in _____ and

____places.

B. _____are represented by one species, *Ginkgo biloba*. It is a living ______.

II. <u>Conifers</u>

Are the most _____ gymnosperms today.

- A. The leaves are called _____. Conifers appear to be "_____" because older needles drop off but are gradually replaced.
- B. Male cones, or _____, and female cones, or _____, contain the very small gametophytes.

In the _____, pollen cones release millions of dustlike pollen grains to be carried by the _____. These land on seed cones and ______ them. The zygotes grow into seeds on the ______ of the seed cones.

from 25-1 Cones & Flowers as Reproductive Organs

II. Life Cycle of Gymnosperms

- A. Pine Tree Example
 - 1. Tree grew from a zygote contained in a_____
 - 2. It is the _____ (2n) _____ generation

- 3. Sapling matures, makes two types of cones:
 - Male: contain ______ -sporangia that produce ______ (male gametophyte) a)
 - Female: contain ______ -sporangia that produce ______ (female gametophyte) b)

В. Process

- Pollen grains (from ______) carried by ______ 1.
- Female cones make a ______ that traps _____ 2.
- Grain splits open, grows a ______ which contains _____ 3.
- Pollen tube grows into the _____, located in _____ 4.
- Sperm _____ of the tube and fertilize _____ in the ovule 5.
- Zygote grows into an 6.
- Embryo is encased in a package; now called a *seed* 7. a) seed = _____ for growth

22-2 Evolution of Seed Plants from.....

III. Angiosperms

- These are _____. They reproduce sexually through their _____ in a А. process called _____. Angiosperm seeds are contained within a _____ that develops into a _____.
- B. Angiosperms are the most widespread of all land plants. They range from ______ to ______. Some even live ______.
- C. Subclasses Number of cotyledons One. (seed leaves) Leaves Veins are branching. Parts in fours or fives or multiples. Xylem/Phloem Scattered throughout. Stems do not thicken Stems from year to year. Examples
- There are two main subclasses:

from 25-1 Cones & Flowers as Reproductive Organs

III. Structure of a Flower

- A. Typical Flower
 - 1. produces both _____
- B. Other 'strategies':
 - 1. specialized male and female flowers on _____ plant (e.g. corn)
 - 2. male and female flowers on separate _____ (e.g. willow)
- C. Flower Parts
 - 1. Are specialized _____
 - 2. Arranged in _____
 - 3. Four kinds:

Name:	Location:	Description:	Function:	Group Name:
Sepals				
D + 1				
Petals				
Stamens				
Carpels		Ovary:		
		Style:		
		Stigma:		

IV. Pollination

- A. Definition:
- B. Two types:
 - 1. Self-pollination:
 - 2. Cross pollination:
- C. Most plants ______ -pollinate, which increases ______ in their offspring

V. Fertilization

- A. Process
 - 1. Pollen grain lands on _____ of same species
 - 2. _____ grows down the style, following a _____
 - 3. Tube reaches _____ and enters the _____
 - 4. Inside pollen tube are two ______ (Note: no tails needed; don't need propel then a) one sperm fuses with ______ to form the ______
 - b) _____ fuses with spare female nuclei to form _____ (3N)
 - 5. Endosperm = _____ for baby plant
- B. Ecological Importance
 - 1. Endosperm is rich in _____

- Examples: grass endosperm: 2. After fertilization C. Outer parts of ovule toughen into _____ 1. Ovary wall ______, merges with other parts to become ______ 2. Plants may use bright and tastes to make fruit attractive to 3. **VI.** Formation of Seeds The evolution of seeds was: a major factor in the success of angiosperms on land А. Seeds assist embryos by providing: B. 1. 2 C. Structure Cotyledon= _____; they contain _____ that is used when seed germinates 1. a) _____ (e.g. corn) have _____ b) _____ (e.g. beans) have _____ Seed coats: Function: to protect seed from 2. a) _____ (e.g. dryness, salt water) b) _____, ____ When animals eat seeds: D. They ______ after their trip through the ______ tract 1. Animal waste acts as ______ from where fruit was eaten 2. 3. Reduces _____ between adult (_____) and offspring (_____) 4. 25-2 Seed Development Germination I. А. Process:
 - Water absorption causes ______ & _____ to swell 1.
 - 2. _____ cracks open
 - Radicle emerges; grows into _____ 3.
 - Growing _____ pushes up through soil 4.

II. <u>Seed Dormancy</u>

Definiton: Α.

В. Purposes:

A long time required for dispersal 1.

- a) e.g. _____ To wait until _____ conditions will support _____ 2.
- b) e.g. plants from temperate regions; _____ in winter, _____ in spring Triggers that end it: C.
 - 1.

22-3 Coevolution of Flowering Plants and Animals

Coevolution:

The first flowering plants evolved at about the same time as the _____, shortly and a while _____. Evolution of angiosperms with modern insects, birds and mammals is very important.

Flower Pollination I.

- Wind: А.
- B. Birds, insects, mammals:
 - 1.
 - Plants provide food in the form of ______. Animals provide direct ______between male and female 2.

	Pollinator	Flower
Attractants for	Bee	
Pollinators		
	Moth	
	Fly	
	Bird	

II. Seed Dispersal

The process of:

There are 2 reasons for dispersal:

1. 2.

Description
Blown to different places.