from..... 22-2 Evolution of Seed Plants

III. Angiosperms

A. These are <u>flowering plants</u>. They reproduce sexually through their <u>flowers</u> in a process called <u>pollination</u>. Angiosperm seeds are contained within a <u>protective wall</u> that develops into a <u>fruit</u>.

B. Angiosperms are the most widespread of all land plants. They range from <u>frigid mountains</u> to <u>blazing deserts</u>. Some even live <u>under water</u>.

C.There are two main subclasses:

Subclass	Monocots	Dicots
Number of cotyledons (seed leaves)	One.	Two.
Leaves	Veins are parallel.	Veins are branching.
Flower	Parts in threes or multiples.	Parts in fours or fives or multiples.
Xylem/Phloem	Scattered throughout.	Arranged in a ring.
Stems	Stems do not thicken from year to year.	Stems grow thicker every year.
Examples	Corn, wheat, palms, orchids, lilies.	Roses, tomatoes, oaks, daisies, sunflowers.

C. There are two main subclasses:

from 25-1 Cones & Flowers as Reproductive Organs

anthe

avula

receptacle

ovary

pedutcle

filement.

HERRAR CONTRACTOR

III. <u>Structure of a Flower</u>

A. Typical Flower

1. produces both <u>male and</u> <u>female gametes</u>

B. Other 'strategies':

1. specialized male and female flowers on <u>same</u> plant (e.g. corn)

2. male and female flowers on separate *plants* (e.g. willow)

- C. Flower Parts
 - 1. Are specialized *leaves*
 - 2. Arranged in *circles*
 - 3. Four kinds

NAME	LOCATION	DESCRIPTION	FUNCTION	GROUP NAME
Sepals	Outermost	Green Leaflike	Protect flower while developing	Calyx
Petals	Just inside the sepals	Often brightly coloured	Attract pollinators	Corolla
Stamens	Just inside the petals	Long thin filament supporting the anther on the top	Makes, releases male gametophyte(pollen)	
Carpels	Center	Ovary, the base Style: Stalk Stigma: where the pollen lands; often sticky and rough surfaced	Makes, houses, female gametophyte (ovules)	Pistil

IV. Pollination

A. Definition: the transfer of pollen from anther to stigma

B. Two types:

1. Self-pollination: when pollen comes from the same flower

2. Cross pollination: when pollen comes from a different plant

C. Most plants <u>cross</u>-pollinate, which increases <u>variation</u> in their offspring

Animation

VIII. Fertilization

- A. Process
- 1. Pollen grain lands on *stigma* of same species
- 2. <u>Pollen tube</u> grows down the style, following a <u>chemical trail</u>
- 3. Tube reaches *ovary* and enters the *ovule*
- 4. Inside pollen tube are two *sperm nuclei*

(Note: no tails needed; don't need propel themselves!)

- a) one sperm fuses with <u>egg</u> to form the <u>zygote</u>
- b) <u>other sperm</u> fuses with spare female nuclei to form <u>endosperm</u> (3N)
- 5. Endosperm = <u>food source</u> for baby plant

B. Ecological Importance

- 1. Endosperm is rich in *important nutrients*
- 2. Examples: grass endosperm: <u>corn, wheat, rice</u>

c. After fertilization

- 1. Outer parts of ovule toughen into seed coat
- 2. Ovary wall <u>thickens</u>, merges with other parts to become <u>fruit</u>
- 3. Plants may use bright <u>colours</u> and <u>sweet</u> tastes to make fruit attractive to <u>animals</u>

Fruit Formation

IX. Formation of Seeds

- A. The evolution of seeds was: a major factor in the success of angiosperms on land
- B. Seeds assist embryos by providing:
 - 1. nourishment
 - 2. protection
- C. Structure
- 1. Cotyledon= <u>seed leaf</u>; they contain <u>stored</u> <u>food</u> that is used when seed germinates

a) *monocots* (e.g. corn) have *one*

b) <u>dicots</u> (e.g. beans) have two

2. Seed coats: Function: to protect seed from

a) *environment*: (e.g. dryness, salt water)

b) animal teeth, digestive chemicals

D. When animals eat seeds:

- 1. They <u>germinate</u> after their trip through the <u>digestive</u> tract
- 2. Animal waste acts as *fertilizer*
- 3. Usually deposited <u>some distance away</u> from where fruit was eaten
- 4. Reduces <u>competition</u> between adult (<u>plant</u>) and offspring (<u>seeds</u>)

25-2 Seed Development

Germination

A. Process:

1. Water absorption causes <u>endosperm</u> & <u>cotyledons</u>to swell

2. seed coat cracks open

3. Radicle emerges; grows into primary root

4. Growing <u>shoot</u> pushes up through soil

III. Seed Dormancy

A. Definiton: A period during which the embryo is alive but not growing

- B. Purposes:
 - 1. A long time required for dispersal
 - a) e.g. <u>coconut</u>
 - 2. To wait until <u>environmental</u> conditions will support <u>plant growth</u>

a) e.g. plants from temperate regions; <u>dormant</u> in winter, <u>germinate</u> in spring

22-3 Coevolution of Flowering Plants and Animals

- Coevolution: the process by which two organisms evolve structures and behaviours in response to changes in each other over time.
- The first flowering plants evolved at about the same time as the <u>earliest mammals</u>, shortly <u>after birds</u> and a while <u>after the earliest</u> <u>insects</u>.
- Evolution of angiosperms with modern insects, birds and mammals is very important.

Ted-Ed co-evolution

I. Flower Pollination

- A. Wind: small, plain simple flowers with little or no fragrance.
- B. Birds, insects, mammals: carry pollen from one plant to another.

1. Plants provide food in the form of *pollen or nectar*.

2. Animals provide direct <u>transportation</u> between male and female <u>gametophyte</u>.

	Pollinator	Flower	
Attractants for Pollinators	Bee	Special ultraviolet color.	
	Moth	Fragrance.	
	Fly	Bad odor.	
	Bird	Bright red and orange colours.	

Fly on corpse flower

II. Seed Dispersal

The process of <u>distributing seeds away from</u> <u>parent plants</u>. There are 2 reasons for dispersal:

1. Prevent competition with parent plants for resources.

2. Colonize new environments

		To De We the
Dispersal Method	Description	
Wind	Blown to different places.	
Pressure	Fruit 'explodes', spreading seeds.	
Barbed or hooked fruits	Attach to animal fur or feathers and are carried to new habitat.	
Tasty Fruit	Digested by animals, carried to new habitat, seeds 'deposited' with fertilizer.	

