Male Reproductive Structures

I.

Overview

A.

Main functions:
1.

Produce a haploid male gamete (sperm)
2. Deposit sperm in the female so fertilization may occur

A.

Scrotum
1.

Muscular pouch that holds the testes outside of the body cavity
2. Spermatogenesis occurs optimally a few degrees less than internal body temperature
3. Muscular scrotum aids in temperature control for the testes a. At high temperatures, testes will be lowered by the scrotum relaxing to cool by increased air circulation and increased sweat production which will cool the scrotum through evaporation

B. \quad Testes (1)
1.

Pair of organs that develop from gonads within abdomen of fetus
a. Descend through a canal into scrotal sacs during the last 2 months of fetal development
2. Located outside the abdominal cavity in the scrotum
3. Contains sections called lobules
a.

Each has many coiled SEMINIFEROUS TUBULES
b. Total length of 250 meters
4. SPERMATOGENESIS is development of sperm
a. Involves meiosis
b. Produce about 300 million sperm per day
c. Starts at puberty and stops at death
d. New sperm are constantly being produced in males
e. Takes about 9 or 10 weeks

f. Occurs inside the seminiferous tubules
g. SERTOLI CELLS, inside the seminiferous tubules nourish the developing sperm cells and regulate the cells that generate sperm cells
5. INTERSTITIAL CELLS lie in the area of the testis between the seminiferous tubules
C. Epididymis (2)

1.

Area where seminiferous tubules join to a highly convoluted tube lying on top of and down the side of the testis
2. Area where sperm mature

D.	Vas Deferens (3)	
	1. S	Sperm stored here
	2. L	Long tube from epididymis to urethra
E.	Seminal Vesicles (6)	
	1. 2	2 small glands
	2. J	Joins vas deferens at the base of the bladder
		Makes most of the seminal fluid
		a. High in fructose which is a nutrient for sperm
		b. Prostaglandins which is a hormone that causes contractions of the vagina to help move sperm
F.	Prostate Gland (5)	
	1.	Donut shaped gland that surround the urethra at the union of the vas deferens and the urethra
	2. \quad d	Makes $1 / 3$ of the seminal fluid
		a. Alkaline secretions that aids sperm motility and survival because it helps to neutralize the acidic environment in the vagina
	3. P	Prostate gland enlargement is common in older men
	4. It	It can constrict the urethra and makes urination difficult
	5. P	Prostate cancer is $3^{\text {rd }}$ largest cancer killer of men

G.

Bulbourethral Glands/Cowper's glands

1. 2 small glands
2. Located below the prostrate
3. Makes a small part of the seminal fluid
a. Secretes mucus that lubricates and readies the urethra prior to ejaculation
b. Secretes alkaline fluid to neutralize urine in urethra
H. Urethra (7)
4. Functions:
a. Exit for the urine

b. Exit for semen
c. Cannot do both at the same time
5. Semen is expelled out of urethra by rhythmic muscular contractions \rightarrow male orgasm
6. A cylindrical-shaped organ that hangs in front of scrotum
7. Spongy tissue inside shaft of penis is flaccid (soft) with normal blood flow in the penis
8. ERECTION occurs from increased blood flow filling spongy tissue
9. Penis needs to be erect and hard to allow semen to be deposited in the vagina near the cervix
10. IMPOTENCY is failure to become erect

B. Epididymis

C. Ductus (vas) deferens
D. Prostate Gland
E. Urethra
II. Process of Ejaculation

A. EJACULATION is a process in which semen is forced from the penis
B. Sexual arousal can cause an erection

1. Penile artery will dilate and there will be more blood entering the spongy tissue of the penis
2. Penile vein will be forced shut and the blood entering the penis will engorge the tissue causing an erection and allowing insertion of the penis into the female's vagina
3. Average length of flaccid (relaxed state) penis is about 8 cm
4. Average length of erect penis is about 13 cm
