IV. How Animal-like Protists Fit into the World

A. Harmful relationships with humans

Protist	Vector	Name of Disease	Symptoms
Plasmodium	Anopheles mosquito	Malaria	Chills and fever
Trypansoma	Tsetse fly	African sleeping sickness	Fever, chills and skin rash
T. cruzi	Insect	Chaga's disease	Weaken heart muscle
Entamoeba	Feces of infected individual	Amebic Dysentery	Diarrhea & intestinal bleeding

- B. Helpful relationships:
 - 1. Termites eat <u>wood</u>, which contains the carbohydrate <u>cellulose</u>, but don't have the enzymes to break it down
 - 2. Trichonympha living in termite gut manufacture the enzyme <u>cellulase</u>
- C. Ecological role:
 - 1. In food chains: are food for tiny <u>multicellular</u> animals, that in turn are food for <u>larger</u> animals

18-3: Plant-Like Protists

- A. Characteristics:
 - 1. Plant-like because they contain: <u>the pigment chorophyll</u> and carry out: <u>photosynthesis</u>
- B. Classification:
 - 1. 3 of 5 phyla are sometimes called algae:
 - a. Euglenophyta
 - b. Pyrrhophyta
 - c. Chrysophyta
 - 2. Slime mold phyla are sometimes called:
 - a. Arasiomycota
 - b. Myxomycota

I. Euglenophyta: Flagellates with Chloroplasts

<u>Movement</u>

- A. Characteristics:
 - 1. Closely resemble: <u>Zoomastiginans</u> difference is euglenophytes possess <u>chloroplasts</u>
- B. Focus on Euglena:
 - 1. Description: long cell, with a pouch containing 2 flagella, the longer extending out of the pouch.
 - 2. Movement:
 - a. Swims in water by using flagella
 - b. Crawls along surfaces by euglenoid movement

- 3. Finding sunlight:
 - a. Eyespot at front end helps find brightest areas in its environment
- 4. Making/Getting Food:
 - As an autotroph: uses its chloroplasts (in light) to photosynthesize
 - b. As a heterotroph: absorbs dissolved nutrients (in darkness)
- 5. Reproduction: by binary fission

STRUCTURE OF A EUGLENA

II. Pyrrophyta: Fire Protists

- A. Also known as dinoflagellates
- B. Characteristics:
 - 1. Most are photosynthetic
 - 2. Swim by means of 2 flagella:
 - a. One wraps around like a belt
 - b. Other trails behind like a tail
 - 3. Many have thick <u>plates</u> and look "armored"
- C. Bioluminescence:
 - 1. When agitated by <u>sudden movement</u> they give off <u>light</u>
 - 2. Their name means <u>"fire plants"</u>

III. Chrysophyta: Golden Protists

- A. Classification
 - 1. 3 kinds: yellow-green algae, golden-brown algae and diatoms
 - 2. Name means <u>"golden plants"</u> and refers to their <u>chloroplasts</u>
- B. Characteristics:
 - 1. Cell wall contains pectin, not cellulose
 - 2. Energy stored as <u>oil</u> rather than <u>starch</u>

- C. Focus on Diatoms
 - 1. Cell walls
 - a. Made of glass!
 - b. Two halves fit together like a <u>petri</u> dish
 - 2. One of the most <u>abundant</u> species in oceans!

IV. <u>Slime Molds</u>: Unusual Protists

A. Distribution:

- 1. Found near <u>rich sources</u> of food such as:
 - a. Rotting wood
 - b. Compost
 - c. Thick wet lawns
- B. Classification:

- 1. Difficult to classify because at one stage they are <u>amoeba</u>-like cells and at others they produce <u>mold</u>-like masses that make spores
- 2. In the past, have been classified as <u>amoebae</u> and as <u>fungi</u>

- C. Focus on Acrasiomycota
 - 1. Life cycle stages:
 - a. Begin as individual cells (amoeba-like); mostly in this form
 - b. When food runs out, groups of cells gather to produce: <u>a large mass of cells</u>
 - c. This mass starts to function as a <u>single organism</u>
 - 2. <u>Migration</u>: up to several <u>centimeters</u>
 - 3. <u>Reproduction</u>:
 - a. Form a structure called a <u>fruiting body</u>
 - b. This makes <u>spores</u> by mitosis
 - c. These become <u>amoeboid</u> cells that repeat the cycle

V. How the Plant-Like Protists Fit Into the World

- A. Distribution:
 - 1. Found in: Fresh water, oceans and land
- B. Harmful Relationships:
 - 1. Euglenophyte blooms (cycle)
 - a. Excess waste dumped into water
 - b. Grow into enormous masses called "blooms"
 - c. Run out of nutrients & die, compounding the pollution clean-up problem

- 2. Dinoflagellate blooms (cycle)
 - a. Some species contain toxins that can paralyze or kill
 - b. People aren't affected by swimming
 - c. Shellfish like <u>clams</u> and <u>oysters</u> trap them for food and concentrate the toxin
 - d. Eating <u>shellfish</u> from "<u>red</u> tide" areas can cause <u>serious</u> illness

- C. Helpful Relationships:
 - 1. <u>Coral</u>, sea anemones, and <u>clams</u> may have dinoflagellates as photosynthetic symbionts <u>Symbiosis-Stated Clearly-For Activity</u>
- D. Ecology
 - 1. Phytoplankton (def'n): small photosynthetic organisms found floating at ocean's surface
 - 2. Importance:
 - a. More than 70%... of photosynthesis on Earth is done here!
 - b. Provide organisms on our planet with <u>oxygen</u> and <u>food</u>
 - c. Example food chain:

Phytoplankton → tiny animals → small fish → large fish → humans (zooplankton) (tuna)