Simple Plants: Chap 20 & 21

20-1 Characteristics of Algae

Ted-Ed Photosynthesis

A. Description:

- 1. Are *photosynthetic* organisms
- 2. Live in fresh water (e.g. <u>streams</u>, <u>ponds</u>, <u>lakes</u>, <u>or</u> <u>swamps</u>) and <u>oceans</u>

B. Must live in or near a source of water

1. Reason: lack internal system of tubes to

move materials from one part to another

Water they live in:
 a) Provides: <u>CO₂, O₂, O₂, and <u>nutrients</u> and carries away <u>wastes</u>
</u>

C. Types of algae

1. Most are <u>multicellular</u>; Giant kelp can grow to <u>60 m</u>

2. Unicellular are <u>microscopic</u> (also classed as <u>protists</u>)

Chlorella sp..

D. Algae structures

1. Cells have <u>cell walls</u>

2. Never have <u>roots</u>, <u>stems</u>, or <u>leaves</u> like land plants

II. <u>Adaptations of Algae to Life</u> <u>Under Water</u>

How they differ from land plants:

Because they:	This means Algae:
Don't need protection from drying out	Are thin (only <u>2 cells</u> thick!)
Exchange materials directly with surrounding water	Have no <u>vascular</u> tissues
Are supported by water	Don't need stems to keep from <u>falling over</u>
Reproduce in water	Make gametes that <u>swim</u>

II. <u>Chlorophyll and Accessory Pigments</u>

- A. Challenges of underwater life:
- 1. Water *absorbs* much of the <u>energy</u> of sunlight
- 2. Algae groups have evolved <u>different forms of</u> <u>chlorophyll</u> that absorb different <u>wavelengths</u> of light
- 3. Some also evolved other <u>light-absorbing</u> compounds called <u>accessory pigments</u>
 - a) They can live in deeper water
 - b) Different <u>reflected</u> wavelengths give algae a wide range of <u>colours</u>

20-2 Groups of Algae

- I. <u>Chlorophyta The Green Algae</u>
- A. Habitat:

1. Found mostly on moist <u>land</u> and in <u>fresh</u> water

Cell arrangement:	Name:	Sketch:
Single-celled	<u>Chlamydomonas</u>	
<u>Colonial</u>	Volvox	
Filamentous (threadlike)	<u>Spirogyra</u> & <u>Oedegonium</u>	Spirogyra 400x
<u>Multicellular</u>	Ulva "sea lettuce"	

II. <u>Phaeophyta - The Brown</u> Algae

A. Habitat:

1. Marine: especially cool, shallow waters in *temperate* or *arctic* oceans

B. Most "sea weeds" are: <u>species of brown algae</u>

- 1. Giant kelp
- 2. *Fucus* (common name: <u>*Rockweed*</u>):
 - a) Make a labeled sketch:
 - b) Give function of:
 - i) Holdfast: attach plant to ocean bottom
 - ii) Bladders: <u>keep plant floating upright in water</u>

III. <u>Rhodophyta - The Red Algae</u>

A. Habitat:

1. Marine: from arctic to <u>tropics</u>, from surface to 170 m deep due to <u>accessory pigments</u>

Porkhora Vierganie

B. Example:

1. *Porphyra* (dried, it's called <u>nori</u> and used to make <u>sushi</u>)

20-3 Algae Lifecycle (not in notes)

- Include diploid (2n) and haploid (n) generations
- Switching back and forth is known as <u>Alternation of</u> <u>Generations!</u>
 - This is characteristic of the plant kingdom
- Algae also shift between sexual (gametes) and asexual (zoospores) reproduction

Reproduction in Ulva (Sea Lettuce)

- Diploid and haploid stages are multicellular
- Diploid plant is called the sporophyte
- Haploid plant is the gametophyte
- When two gametes fuse, the diploid sporophyte forms
- The sporophyte undergoes meiosis and releases haploid zoospores (+ and -) which in turn form the gametophytes.
- The gametophytes release gametes (+a and -)which fuse to form sporophytes
- Typical of most algae and most organisms in Kingdom Plantae

Reproduction in Fucus

- Alternation of generations, but multicellular gametophyte is missing...this is an exception in the Kingdom Plantae!
- Diploid sporophyte is present with specialized reproductive areas on the tips
- One area produces female gamete egg
- One Area produces the male gamete motile sperm
- Fertilization occurs, the zygote sinks, attaches to a rock and forms the dipoild sporophyte.
- This is similar to how most Animals reproduce...but remember, this is unusual in Kingdom Plantae.

20-4 Where Algae Fit into the World

- A. Ecological role:
- 1. In food chains: called the "<u>grasses of the</u> <u>seas</u>"

2. Habitat for others: e.g. the kelp forests of

North American coasts

- 3. Oxygen providers:
 - a) Life could not have *evolved* without the O₂ they release in *photosynthesis*

Ted-Ed: Killer Algae?

Algae do 50 - 70% of all **b**) photosynthesis on Earth

B. Uses by <u>humans</u>

1. Sources of *chemicals* used in:

- a) Drugs
- b) Food additives
- c) Industrial products
- d) <u>Agar</u> used to make plates for microbiology

Biofuel algae

Carageenan Containing Products

Ted-Ed: Aquaculture Pros and Cons