21-1 Plants Invade the Land

The Demands:	What land plants must do:
Provide cells with a constant <u>water supply</u>	 a) find water b) <u>Deliver it</u> to all cells c) Protect against <u>water</u> <u>loss</u> by evaporation
Expose food-making parts to <u>sunlight</u>	need <u>rigid supports</u> to hold up & <u>expose</u> leaves
Different tasks performed in distant plant parts: a) <u>roots</u> take up water & nutrients b) <u>leaves</u> make food	 Need a transport system: a) water/nutrients <u>upward</u> b) sugars made by <u>photo-</u> s<u>ynthesis</u> downward
For reproduction, gametes must find each other	Need a mechanism to deliver sperm that DOESN'T involve having them <u>swim</u>

21-2 The Mosses, Liverworts, and Hornworts

I. Introduction

A. Need *water* for reproduction to occur

B. Thrive only in wet areas: swamps, marshes, near streams, in rainforests

C. All less than a few centimeters tall

D. Mosses:

1. Each plant has:

a) A thin, upright *shoot* like a stem with tiny *Leaves* called the Gametophyte

b) From base of the shoot grow *rhizoids* that anchor the plant

c) Shoots may be topped with a brown flag-like

structure called a Sporophyte

II. <u>Physical Characteristics of</u> <u>Bryophytes</u>

- A. Water Conduction
 - 1. Lack tubes
 - 2. Water passes between cells by osmosis and surface tension
 - 3. These methods work: over short distances only
 - can't grow tall
 - 4. Lack a protective surface covering to prevent evaporation
 - 5. "Leaves" only one cell thick; dry out quickly
 - 6. Lack true roots: *rhizoids* anchor, but don't *absorb* and *transport* water & minerals

B. Reproduction

1. Sperm must *swim* to the egg, using *flagella* to propel themselves

2. Moss environment must be wet for: *at least part of the year*

The Moss Life Cycle - Alternation of Generation

But before we get into the notes, let's look at a summary animation first!

II. <u>Alternation of Generations in</u> Mosses

A. Life Cycle Stages:

At the tips of the gametophyte:
 a) Antheridium: makes sperm

Archegonium: makes eggs

2. Fertilization

- a) Sperm swims to *archegonium*
- b) Plants must be covered with *rainwater* or *dew*
- c) Gamete fusion produces a *zygote* (diploid:"2n")

3. Growth of 2n (Diploid) Generation

- a) Zygote grows into *sporophyte*
- b) Its water and nutrients are supplied by female gametophyte
- c) Sporophytes cannot live *independently*
- d) Capsule at end of stalk makes haploid (1n) spores by meiosis

- 4. Spore Release
 - a) When *ripe*, capsule shakes out spores

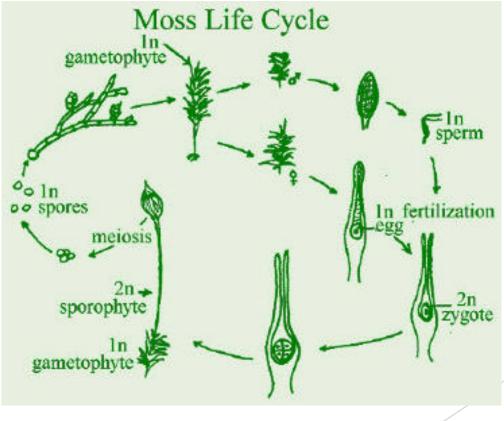
b) Spores carried off by wind and

water

5. Growth of 1n (Haploid) Generation

a) Spores that land in moist places germinate into a *protonema*

b) Protonema = mass of tangled green filaments(look like algae!)


c) This grows *rhizoids* into soil and *shoots* into the air that develop into moss *gametophytes*

d) The cycle begins again!

B. Summary:

- 1) Gametophyte (1n) is the *dominant*, obvious stage
- 2) Fertilization requires *standing water*
- 3) Sporophyte is dependent upon gametophyte

21-3 The Ferns and the First Vascular Plants

I. Introduction to Tracheophyta

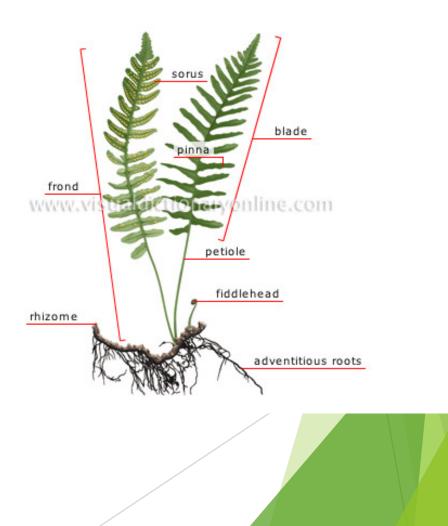
A. "True" Land Plants because they: have evolved ways of freeing themselves from dependence upon wet environments

How did they do it?

- 1. Vascular tissues: 2 types:
 - a) Xylem: moves water from roots to rest of plant
 b) Phloem: transports nutrients & photosynthetic products
- 2. Tracheid cells in xylem have thick, strong walls that help plants stand up against gravity
- 3. True roots have transport tissue in a central vascular cylinder
- 4. True leaves have:
 - a) veins (def'n): bundles of vascular tissue
 - b) cuticle (def'n): waxy covering that prevents water loss

II. <u>Club Mosses and Horsetails</u>

- A. The only living descendants of *large*, *ancient landplant groups*
- B. Some grew up to 40 m tall!
- C. Some fossilized into huge coal beds
- D. Sketch a horsetail: Label its stem and leaves:



III. <u>Physical Characteristics of</u> <u>Ferns</u>

- A. Organs:
- 1. Have true vascular tissues
- 2. True roots
- 3. Underground stems called *rhizomes*
- 4. Large leaves called fronds

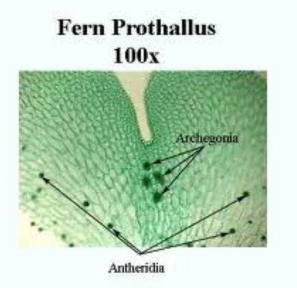
B. Size & Habitat

1. Up to *1 metre* tall in North America

2. Found in *wet*, or *seasonally wet* places (e.g. rainforests of *Pacific Northwest*)

IV. <u>Alternation of Generations</u> in Ferns

- A. Life Cycle Stages:
- 1. Spore Production/Release:
- a) Adult sporophytes produce haploid *spores* on *underside* of fronds
- b) Formed in tiny containers called *sporangia*
- c) Sporangia cluster together in groups called *sori*
- d) When *ripe*, spores released; carried by *wind*, *water*


Animation of Life Cycle

2. Growth

- a) Spores develop into haploid (1n) gametophytes
- b) Grow into small, heart-shaped prothallium

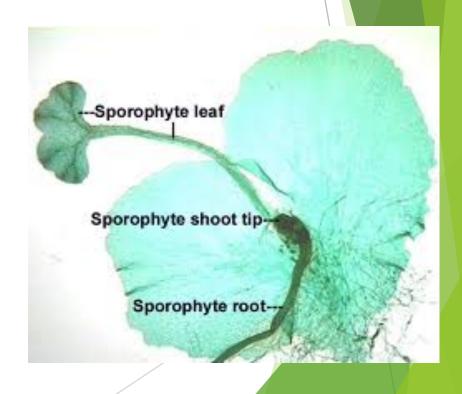
c) Antheridia and archegonia develop on underside of prothallium

3. Fertilization

a) Antheridia release sperm

b) Sperm must swim through a film of water to an archegonium

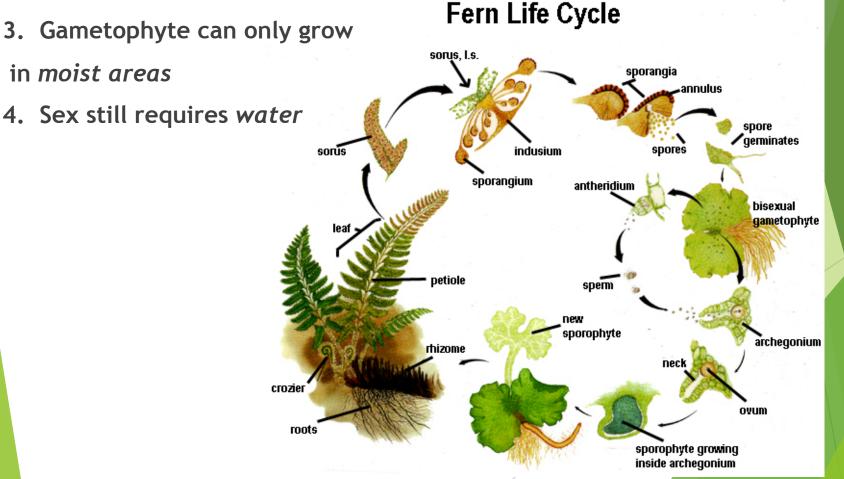
c) Each archegonium contains one egg


d) Fusion of gametes produces a *diploid* (2n) *sporophyte*

4. Growth

Time Lapse

- a) New sporophyte puts out *fronds*, *rhizomes*
- **b)** Gametophyte withers away



B. Summary:

- 1. Dominant, obvious stage is the sporophyte
- 2. Sporophyte is a well-developed land plant with

true vascular tissue

21-4 Where Mosses and Ferns Fit into the World

I. Mosses: Ecological Role

A. Common in *damp areas*

II. Mosses: Uses by Humans

A. Gardening1. Used as plants

- B. Burning sphagnum
 - 1. Flavours scotch whiskey
 - 2. Peat is used as *fuel*

III. Ferns: Ecological Role

- A. Common in the shadows of *forest trees*, because they: *require little light*
- IV. Ferns: Uses by Humans
 - A. Gardening
 - 1. Used as plants
 - B. Food
 - 1. Some species eaten when young; fronds called fiddleheads

